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On Nonlinear Fractional Integro—Differential
Equations with Positive Constant Coefficient

Shivaji Tate, V. V. Kharat and H. T. Dinde

Abstract. The aim of this study is to investigate the existence and other
properties of solution of nonlinear fractional integro—differential equa-
tions with constant coefficient. Also with the help of Pachpatte’s in-
equality, we prove the continuous dependence of the solutions.
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1. Introduction

Fractional differential equations have been recently used as effective tools
in the modeling of many phenomena in various fields of applied sciences and
engineering such as acoustic control, signal processing, porous media, electro-
chemistry, viscoelasticity, rheology, polymer physics, proteins, electromagnet-
ics, optics, medicine, economics, astrophysics, chemical engineering, chaotic
dynamics, statistical physics and so on (see [1,3,5,6,8,12,18,19,27,30] and
the references therein). Many problems can be modeled by fractional integro—
differential equations from various sciences and engineering applications.

Recently, many researchers have studied the Cauchy problem and long-
time behavior for nonlinear fractional differential and integro—differential
equations and obtained many interesting results using all kinds of fixed point
theorems, for example, by Aghajani et al. [2], Balachandrann and Park [4],
Cabrera et al. [7], Dong et al. [10], Furati and Tatar [11], Jagtap and Kharat
[13], Kharat [14], Kendre et al. [15-17], Liang et al. [20], N’Guérékata [22,23],
Pierri and O’Regan [26], Ren et al. [28], Wang and Li [33], Zhou et al. [34,35],
Zhou and Jiao [36] and the references therein.

Fractional differential equations with constant coefficients are used to
describe many physical and chemical problems [27] such as the motion of a
large thin plate in a Newtonian fluid, the process of cooling a semi-infinite
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body by radiation, the phenomena in electromagnetic, acoustic, viscoelastic-
ity, electrochemistry and material science and so on. Therefore, it is worth to
study a nonlinear fractional differential equations with constant coeflicient.
In [31], using generalized Banach fixed point theorem, Tate et al. dis-
cussed the existence and interval of existence of solutions, uniqueness, con-
tinuous dependence of solutions on initial conditions, estimates on solutions
and continuous dependence on parameters and functions involved in the non-
linear fractional differential equation with constant coefficient A > 0 of the

type:

{CDax(t) = Xz(t) + f(t,z(t), t €[0,T], T >0, )

z(0) = zp € R,

where °D*(0 < a < 1) denotes the caputo fractional derivative, f: J x R —
R is a continuous function.

In [32], using Banach fixed point theorem coupled with Bielecki-type
norm and the integral inequality, Tidke investigated the existence, uniqueness
and other properties of solutions of fractional semilinear evolution equation
of the type:

Doa(t) = A(t)a(t) + £t 2(1), t € J = [0,1],
x(0) = xo,

where 0 < ¢ < 1, D? denotes the Caputo fractional derivative of order g, the
unknown z(.) takes the values in the Banach space X; f € C(J x X, X), and
A(t) is a bounded linear operator on X and zg is a given element of X.

Motivated by the above-mentioned work, in this paper, we investigate
the existence and interval of existence, uniqueness, continuous dependence
of solutions on initial conditions of a nonlinear fractional integro—differential
equations with constant coefficient A > 0 of the type:

DY (t) = Aa(t) + f (t,x(t), JEn, s)x(s)ds) L teJ=1[0,T], T>0,
:L‘(O) =x9 € R,

(1.2)

where “D® denotes the Caputo fractional derivative of order 0 < a < 1,
f:JXxRxR—-Randh:JxJ— R are given continuous functions.

We further derive an estimate on solutions and continuous dependence

on parameters and functions involved in the right hand side of Eq. (1.2). Fi-

nally, one illustrative example is given to demonstrate the theoretical results.

2. Preliminaries

Here, we present some definitions, notations and results from [8,21,27,29]
which are used throughout this paper.

Let C(J,R) be the Banach space of continuous functions from .J into R
with the supremum norm ||.||.
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Definition 2.1. A real-valued function f(¢)(¢ > 0) is said to be in space
C.(p € R), if there exists a real number p > p such that f(t) = tPg(t), where
g € C[0,00).

Definition 2.2. A real-valued function f(¢)(¢ > 0) is said to be in the space
Cnon e NU{O}, if fm € C,..

Definition 2.3. Let f € C,, (1 > —1), then the (left-sided) Riemann-Liouville
fractional integral of order o > 0 of the function f is given by

1 t

I¢f(t) = —/ (t—s)*"1f(s)ds, t > 0and I°f(t) = f(1),
L(a) Jo

where T'(.) is Euler’s Gamma function.

Definition 2.4. The (left-sided) Caputo fractional derivative of order a > 0

of the function f € C"; (n € NU{0}), is given by:

fm(), ifa=n

Im=efn(t), fn—1<a<n, neN,

where n = [a] + 1 denotes the integer part of the real number .
Note that I “Df(t) = f(t) — >, 3f OD¢k p—1<a<n neN.

Definition 2.5. The (left-sided) Riemann-Liouville fractional derivative of
order a > 0 of the function f € C"; (n € NU{0}), is given by:

dn
Df(t) = EI" “fit),n—1<a<n, neN.

Following relation holds between Caluto and Riemann—Liouville fractional
derivatives:

‘DYf(t) = < ka0+ ),nl<a§n,n€N.

Definition 2.6. The function E, (o > 0) defined by E,(2) = >"72, Wkﬂ), is
called Mittag—Leffler function of order a.

Lemma 2.7. Let o, 3 € [0,00). Then
! I'(a)l'(3)
st — g)P T ds = ¢otB-1 .
fyeems Do+ )

The following Pachpatte’s inequality plays an important role in obtain-
ing our main results.

Theorem 2.8 ([25] p. 39). Let u(t), f(t) and q(t) be nonnegative continuous
functions defined on Ry, and n(t) be a positive and nondecreasing continuous
function defined on Ry for which the inequality

mwsmw+43@ﬂw@+élvmﬁmﬁm,
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holds for t € R,.. Then

<1+ [ sreen( [ 110+ atr)ar )as|
fort e Ry.

We will use the generalized Banach fixed point theorem to prove the existence
results.

Theorem 2.9 [9]. Let U be a nonempty closed subset of a Banach space E,
and let o, > 0, n € NU {0}, be a sequence such that > " oy, converges.
Moreover, let the mapping A : U — U satisfy the inequality

[A"u — A" < o [|u — o]
for every n € NU {0}, and every u,v € U. Then, A has a uniquely defined

fized point u*. Furthermore, the sequence {A™ug}S2, converges to this fized
point u* for every ug € U.

3. Existence Results and Interval of Existence

The following lemma deals with the equivalence of a nonlinear fractional
integro—differential equation (1.2).

Lemma 3.1. If the function f: J xR xR — R is a continuous function, then
a nonlinear fractional integro—differential equation (1.2) is equivalent to the
integral equation,

z(t) = wo + F()\O‘)/o (t —s)* ta(s)ds
i t 780671 s x(s s Nl _ .
+F(a)/0(t ) f<,(),/0h(t,)()d>d’
ted o

Proof. Let z(t) be a solution of Eq. (1.2). Define

2(t) = Ma(t) + f (t,x(t), /0 t h(t, 5)x(5)d5> .

Then
z(t) = °D%x(t).
Since
‘Dx(t) = D*(x(t) — o),
where D® is Riemann-Liounille fractional derivative of order o with lower
limit 0, then we get

(1) = D (a(t) — 20) = 1" (a(t) — o).

This gives
I'z(t) = I'*(x(t) — x0) + k,
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where k is any constant. since z(t) and x(t)—xz¢ are both continuous functions,
for t = 0 we get kK = 0. This gives

I'z(t) = ' (x(t) — x0).

Operating Riemann-Liouville fractional differential operator D'~ on both
sides, we obtain

x(t) —xg = D'TOT 2(t)
= D'I°T'2(t)
= D'1Mz(1)
=TI1%(t)
Using the definition of z(t), we obtain (3.1).
Conversely, suppose that x(¢) is the solution of the Eq. (3.1). Then, it
can be written as
x(t) = xo + I*2(), (3.2)
where z(t) = Az(t)+ f (t, x(t), fot h(t, s)x(s)ds) Since z(t) is continuous and

x( is constant, operating the Caputo fractional differential operator <D% on
both sides of Eq. (3.2) we obtain

‘D%z (t) =° DY +° D*I%2(t) = 2(t).
This gives

DOw(t) = Aalt) + f (t,a:(t), /O "ne, s)x(s)ds) .

From (3.2), we get x(0) = . This proves that z(¢) is the solution of Eq.
(1.2). O

Theorem 3.2. Let T > 0 and let £ > 0 be a constant such that 0 € [z —
& xo+&]. Assume that f : J X [xg — & xo+&] X [x0 — &, 20 + &] — R satisfies
the following condition:

(H1) There exists a constant L > 0 such that

‘f(t,wvy) - f(tvjj’g)l < L(|x_ jl + |y - g|)
Let

X = min{T { L(a+ 1) } a}
"L(E€+ [xo )X+ L(L+ Thy)) + M
where hy = Sup{|h(t, )10 < s <t < T}, M = Supiey |f(t,0,0)|. Then, the
equation (1.2) has a unique solution x : [0, x] — R.

Proof. Define the set U = {z € C([0, x],R) : 2(0) = o, ||z — x0|| < &}. Since
xg € U, U is nonempty. Also, U is a closed, bounded and convex subset of
Banach space C([0, x|, R). On U, we define an operator A by

Az(t) = zo + ﬁ/o (t—s)*"la(s)ds

+ ﬁ /Ot(t —s)*Lf (s,x(s),/os h(s,T)x(T)dT) ds, t €[0,x].
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Now, we prove that A maps the set U to itself. Let us take any x € U and
t € [0, x]. Then,

A ! a—1
[An(t) a0l < o5 [ (0= 9" ato)] as

t / <s,m<s>, / ) h(s,7>m<7)d7>

| (t—s)!
f (s,x(s), /0 ) h(s,T)x(T)dT>

t
(50,0 ds + / (t— 9 [£(5,0,0)] ds

ds

Using (H1) and Definition of U, for any t € [0, x],

lz()] < [2(t) — ol + [wo| < & + [0 (3.3)

‘ (” /htr ) f(s,o,O)‘

<r [|a: @) |+/0 Ih(s, ) |at(7')|d7'}
< L(§ + |zol)(1 + Thr) (3.4)

Therefore

|Ax(t) — zo] < = /(t—s)a_1(§+|$o|)d8

(a) 0
1 t —g)e ! T s
+F(a)/0(t ) L(1 + Thr) (€ + |zo|) d

t
+£/(t—s)(’ Lds

< >\+L1+ThT f+|l‘0‘ +M
I'a+1)

e
{ (A+ L(1 + Thr))(§ + |xol) —|—M}

<

MNa+1) X

A+ LA+ Thr)) &+ |zo]) + M
T(a+1)

{ I'a+1)¢ }
(E+ |z AN+ LA+ Thy))+ M
<¢.
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we note that, for 0 <t; <ty <y,

|Az(t1) — Ax(t2)]

_/t _ 5y (sx /hsr )
grlA/mﬂh$“ ~ (t2 = 9" }Ja(s) — o] + [aol) ds
b /-ul ~ (ta - 5"}

{ (sac /hm ) 500)’+|f(s,0,0)}ds

+7/\/ t2 .13 l‘0|+|$0‘) S

+@ /t (to — )al{ f(s,x(s),/os h(s,f)x(T)dT> f(s,0,0>‘
+ f(s,0,0)|} ds

Using (3.3) and (3.4), we get
|Az(t1) — Ax(t2)]

(At L(1+ Thy))(€ + 20) + M | e,
<{ L }/‘{u 9O (ts— 5" 1} d

A+ L(1 Th M
+ L(1 + T §+x0+ }/ (ts — 5)°~1 ds
t

+

{(A+L 1+ThT))(€+xo)+M

S bzt -+ o —15).
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This shows that Ax is continuous.

Thus for any = € U, we have Az € C([0,x],R), Az(zy) = z¢ and
||Az — z¢|| < £ This proves that Az € U whenever z € U, i.e., A maps the
set U into itself.

The next step is to prove that, for every n € NU{0}, and every x,y € U,
we have

(A4 L(1 + Thy))te]”
I'(na+1)

A"z — A"y < lz —yll, t €[0,x]. (3-5)

This can be seen by induction. For n = 0, the inequality (3.5) is trivially
true. We assume that (3.5) is true for n = m — 1 and prove it for n = m.
Using definition of operator A and hypothesis (H1), we have

| A"z (t) — A™y(t)
— |A(A™ Ya(t)) — A(A™ Yy(1))]

)\/0 (t—s)* A" x(s)ds

‘ -

<

—

(a

+ [ =y (S,Am_lx(s),/os h(s,T)Am_lac(T)dT> ds

+

$)2 LA™y (5) ds

s)e L f <s,Am1y(s), /OS h(S,T)Amly(T)dT) ds
"y(t)]
< m)\/o (t—s)* " A" a(s) — A™ My (s)| ds

+F(1a)/0t(ts)a1 f <5,Am1:c(5),/08 h(S,T)Amlx(T)dT>
_f (S,Amly(s), /O Sh(s,T)AM1y(T)dT>‘ds (3.6)

Using hypothesis (H1) and (3.5) in (3.6) for n =m — 1, we get
[A™ () — A™y(t)]

A ()‘+L(1+Th'T))m_l ‘ a—1_am—a«a
ST T(m—Da+l) x_yu/(t_s) s

t
(t
|A™x A

0
_)\/O
_/ot(t
(1) -

1

L t_sal m—1 —m718
e [ {!A (s) — A" y()|

/ |h(s, )| |A" Ta(s) — AT s)|d7’} ds
)\‘FL(I‘FThT)) (/\+L(1+ThT _ ||/ a 1 gam—a q¢
= () T((m—Da+1) 4

[(A+ L(1 + Thy))te]™
- T'(ma+1)

=yl
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which is our desired inequality (3.5). Hence, we have

[(A+ LA+ Thy))x"]"

Amg — Ayl <
A"z yll < L(na+1)

|z —yl||, for all n € NU{0}.

By definition 2.6, we have

o0

[(A+ L1+ Thr))x"
Z T(na+ 17;

=Eo((A+ L(1 4+ Thr))x®).
n=0
We have proved that the operator A satisfies all the conditions of Theorem

2.9 and hence, A has a unique fixed point z : [0, x] — R which is the solution
of Eq.(1.2). O

Remark 3.3. Hereafter, to study the other properties of solutions of Eq.(1.2),
we take f: JJ x RxR — R and C(J,R)- the Banach space endowed with the
supremum norm ||| .

4. Estimates on the Solutions

The following theorem contains the estimate on the solution of Eq. (1.2).
Theorem 4.1. Suppose that the function f : J x R x R — R satisfies the
hypothesis (H1). If z(t),t € J is any solution of Eq. (1.2) then

o< (il i) [+ e e e o))
t € J. where M = Supe s |f(t,0,0)| and hy = Sup{|h(t,s)]: 0 <s <t <T}.

Proof. Let x(t) be any solution of (1.2), then

‘D%(t) = dx(t) + f (t,x(t),/ot h(t,s)x(s)ds) , (0) = xo

=a(t) =z + F(/\oz)/o (t—s)* ta(s)ds

+ﬁ /Ot(t —s)Lf (s,x(s),/os h(t,7‘)x(7)d7> ds.

Therefore,

2(t)] < Jzol + F(Aa) / (t— )21 |z(s)] ds

I
+r<a>/o(t )

1

Using hypothesis (H1), for any ¢t € J, we get

2(t)] < |o| + Ffa) / (t— )2 [a(s)] ds

f <s,x(s),/os h(s,7)x(7)d¢> - f(s,0,0)’ ds
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L ! a—1
+m/0 (t—s) |z(s)| ds

b [ (1 st ([ s nllaolar) as

M ! a—1
+m/0 (t—s)*""ds

M A+ L
< leol + Ot D

—s)* g s
e G [ et g

+%/ (t — s)o- 1(/ (s |d7>ds

< ool + o+ [ G- i)

® Lhr
+/0 O+l x(7)|d7} ds (4.1)

Applying Pachpattes inequality given in the Theorem 2.8 to the equation
(4.1) with

u(t) = z(t), n(t) = |zo| + F(a]\i 1)ta, F(s) = (AFZra)L) (t—s)* L,
Lhr
we obtain
(0 < (ool + rar )
" "(A+1L) _ga-lgy ALL) e
e e ot ( [ { S )
Lhr
—|—()\ D) }dT) ds}

< (bol+ o) [ v = T 0

This gives

2(t)] < (|xo| - r?ﬁn) [1 * (?&?f; ewp{ %&Tf; ’ 5?5) H

O

5. Continuous Dependence and Uniqueness of Solutions

Theorem 5.1. Suppose that the function f : J x R x R — R satisfies the
hypothesis (H1). Let x1(t) and x2(t) be the solutions of equation

‘D(t) = Ax(t) + f (t,x(t),/o h(t,s)x(s)ds) , t e, (5.1)
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corresponding to x(0) = xg and x(0) = x§ respectively. Then

(A + L)T® A+ LYT®  LhyT
Tlat1) { Tlat1) ()\JrL)H (5-2)

lex — z2l] < Joo — 23 [1+

Proof. Let x1(t) and x2(t) be the solutions of Eq. (5.1) corresponding to
x(0) = z¢ and z(0) = z§, respectively. Therefore,

‘D% (t) = A1 (t) + f <t z1(t), /0 h(t,s)xl(s)ds> , 1(0) = xo
and

‘D%o(t) = Aaa(t) + f <t x2(t), /0 h(t,s)xg(s)ds> , 22(0) = zj.
This implies

x1(t) = xo + T‘()\cy)/o (t—s8)* oy (s)ds

bo =971 (.m0, [ ne o) as,

and

Using the hypothesis (H1), for any ¢ € [0, 7], we obtain

1 (t) — 2(8)] < |0 — ] + Ffa) / (t— )2 |1 (s) — a(s)] ds
L

S / (t = )% a1 (5) — 2a(s)] ds

+P(La)/0t<t—s (/ W5, 7| [a1(r) — 2ol >|dr)

AN+ L) a1
< o= il + 5D [0 s (s) - )]
+I€/<I;T)/O(ts)°‘1</0 |x1(7'):r2(7)|d7') ds

Therefore,
(A+1L)
[(e)

S Lhy
+ /O Mxl(f)—@(r)mr} ds (5.3)

21 (t) — 2 (t)] < w0 — a5 + /O (t—s)"" [1‘1(5) — za(s)]|
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Applying Pachpatte’s inequality given in the Theorem 2.8 to the inequation
(5.3) with

u(t) = |z1(t) — z2(t)], n(t) = |zo — x|, f(s) = (o) (t—s)"",
Lh
q(1) = 0 +TL),
we obtain

|21(2) — 22 (8)] < |zo — g

e [ o [ (G

Lhr
+()\ ) }dT)ds]
. (AN L)T* (A+L)T*  LhrT
< — 1 .
< leo x0|[ T Tatr) M\ Tat) T 0+D)
This gives the inequality (5.2). O

Remark 5.2. The inequality (5.2) shows continuous dependence of solution
of equation (1.2) on initial conditions and also it gives the uniqueness. The
uniqueness follows by putting zg = 2 in (5.2).

6. Continuous Dependence on Functions Involved and
Parameters in Nonlinear Fractional Integro—Differential
Equation

This section deals with the study of continuous dependence of solution of a
Eq. (1.2) on functions and parameters involved therein.
Consider the Eq. (1.2) and

CDay@)Ay(mF(t,y(t), / h(t,s>y<s>ds), yO) =weR  (6.1)

where F': J X R xR — R.
In the following theorem, we prove continuous dependence of solutions
of Eq. (1.2) on the functions involved in right-hand side of Eq. (1.2).

Theorem 6.1. Suppose that f in (1.2) satisfies the hypothesis (H1). Let y(t)
be a solution of Eq. (6.1) and suppose that

[F (& y(@),5(8) = F(t,y(),5(t)| <&, t € J and |zo —yo| <4, (6.2)

where €,0 > 0 are arbitrary small constants. Then the solution x(t) of the
Eq. (1.2) depends continuously on the functions involved therein.

Proof. Let x(t) and y(t) be any solution of (1.2) and (6.1) respectively. Then

CDOw(t) = Ma(t) + f (t,x(t), /O i, s)x(s)ds) = 2(0) = 2o
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and
“Doy(t) = Ny(t) + F (t, o). [ e s>y<s>ds) L y(0) = 4o

This implies

A ! a—1
x(t) = xo + F(a)/o (t—s)* " x(s)ds

_|_F(1a)/0t(t_s)0‘_1f (s,x(s)7/os h(t,T):U(T)dT) ds,

and

y(t) = o + ﬁ / (t — 5)*Yy(s) ds

+F()/t 1F<sy /htr ) :

Using hypothesis, we obtain

2(t) — ()] < 2o — vol + F(Aa) / (t = 9)* [a(s) — y(s)| ds

+F(1a)/t(ts)°‘1 f <s,x(s),/08h(t,7)x(7-)d7->
(s, nmtorr o

70 — 3ol + (a)/a—s) “Jals) — y(s)] ds
( o)
@

“1lf /htr )
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< {a+ Mt} + /Ota—s)“-l 2(s) — y(s)] ds
o oo ([ s

< {5+F<a:_1)ta}+ 0 “F(Z)L)(ts)al [x<s>y<s>|
+/OS (ALﬁTL) lz(7) — y(7)| dT] ds

Applying Pachpatte’s inequality given in the Theorem 2.8 with

ult) = la(t) = )] n0) = {0+ St b plo) = G- o,
_ Lhy
we obtain

(1) — y(1)] < {5+€1 }

’5
+

¢ (,\lL) (t - S)a_lexp<(/\+L)s“ N LhTs))dS}

Finally, we get

[2(t) —y(t)] < {6 - 1“(a€+1)ta} [1

! / Ty ¢ s>a_1“”( Tt o TB)dS} |

(6.3)

From the inequality (6.3), it follows that the solution z(t) of Eq. (1.2) depends
continuously on the functions involved in the right hand side of equation (1.2).
If e = 0 then the inequality (6.3) gives continuous dependence of solutions on
initial conditions and we also note that as €, > 0 were arbitrary, by taking
€,0 — 07, we have z — y, where x : J — R and y : J — R are the solutions
of (1.2) and (6.1), respectively. O

Next, we consider the differential equation of fractional order:

‘D% (t) = A1 (t) + H (t,xl(t),/o h(t,s)xl(s)ds,51> , 21(0) =z (6.4)
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and

‘DYqo(t) = Axo(t) + H (t x2(t), /Ot h(t,s)xg(s)ds,(Sg) , 22(0) =z (6.5)

fort € J, where H : JXRXRXR — R, zg € R and d1, d5 are real parameters.
The next theorem deals with the continuous dependence of solutions of
Eq. (1.2) on parameters.

Theorem 6.2. Assume that the function H satisfies the conditions:
|H(t,$,y, 51) - H(tvi.7ga 51)' < L1(|£E - j| + |y - Zﬂ), (66)
|H(t,l‘,y,51)7H(t7l’,y,62)| < Ly |51752|5 (67)

where Ly, Ly > 0. Let x1(t) and x2(t) be the solutions of equation (6.4) and
(6.5), respectively. Then,

21 (t) — 2a(t)] < |61 — 62| Lo [F(al—i— i+ F(a1+ 1)ta/0 At L)y et

A+ LOT®  LiheT
xea?p{ Tla+ 1) + O+ L) }ds} (6.8)

Proof. Let x1(t) and 2:5(¢) be the solution of (6.4) and (6.5) respectively, then

D%y (£) = Ao (£) + H (t 1 (8), /Ot ht, s)xl(s)ds,él) C21(0) = g

and

‘Ds(t) = Axo(t) + H (t, xg(t),/o h(t,s)xg(s)ds,ég) , 22(0) = xo

This gives

A ! a—1
wl(t)onrF(a)/O (t—s)* "z1(s)ds

+ﬁ /Ot(t —s8)*'H (s,xl(s),/os h(s,7)z1(T)dT, 51) ds

and

xa(t) = xo + ﬁ/o (t —s)* tag(s) ds

+$ /Ot(t—s)alH (S,xg(s),/os h(s,T)xQ(T)dT,(Sg) ds,

Therefore, for any t € J,

r0) - 3001 < s [ (= 5 [z1(5) — 7a(s)] ds

s [ (o) [ s riana )

_m (s 22(5), /0 (s, P)ea(r)dr, 52> ‘ ds
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< foey | =T ) = )] s

(@)
+ﬁ /Ot(t —s)* " HH <s,x1(8),/05h(s,T)ah(T)dTa 51)

H <s,$2(s), /O ) h(s,r)x2<7)d7,51> d

+ﬁ /Ot(t )
—-H <s,:cg(s),/os h(s,T)xo(T)dT, 52) d

H (s,xg(s),/os h(s, )z (T)drdT, 51>

< Fog [ =9 o) — (o) s s [

Oé

(m ) — za(s |+/\hs¢|\x )d7>

t
2 a—1
— t— 01 — 6o d
i, Al

|61_6 |L « ()‘+L1) a—1
<t T /(t—s> 21(5) — 72(s)] ds

bt ([ s

01 — d2| Ly A+ L) a1 {12 (8) — 2o(s
T s e [ Rt

s Lihr
—|—/O Ot L) |1 (T) —x2(7)|d7'] ds

Applying Pachpatte’s inequality given in the Theorem 2.8 with

|61 — d2| Lo o

u(t) = lz(t) —y(t)], n(t) = Tat D) , fs) = o) (t — s)21
_ Lihr
q(T) - (A+L1)7
we obtain
lz1(t) — 22(t)] < |51i( 52|1§2t“ [1 + ; ()\F—Eoz];l) (t—s)* !
s L

o] B

ersy }d> ds]
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Finally, we get

0) — 22(0)] < 161 = 6ol Lo | st
L o [T+ L) o (A+Ly)T™
Mot D) Jo T 7% lexp{ T(a+1)

7. Illustrative Example

In this section, we give an example to illustrate the usefulness of our main
results.
We consider

cDéac(t) =z(t)+ % + %/0 @ i t)2x(8)ds7 t €10,1], (7.1)
x(0) = 0.
Define f(¢t,z(t), K1z(t)) = :Ct(f)i_:rgl + %le(t), tel0,1], o = %, A=1.
where K;xz(t) :/0 (2—1—%)2%(8)(18

Clearly, the function f is continuous.
For any z1,7z2 € R and t € [0, 1]

|1 — 22| + [K121 — K129

NeYie

|f(t, 21, Kywy) — f(t, 22, Ky22)| <

Hence hypothesis (H1) is satisfied with L = §. It follows from Theorem 3.2
that the problem (7.1) has a unique solution on [0,1].

8. Conclusion

In this paper, we have successfully established an existence and interval
of existence of solutions, uniqueness, continuous dependence of the solu-
tions on initial conditions, estimates on solutions and continuous depen-
dence on parameters and functions involved in a nonlinear fractional integro—
differential equation with constant coefficient. The important fact of this
paper is that with the minimum assumptions on the function f, we have
obtained various properties of solutions of a nonlinear fractional integro—
differential equation with constant coefficient. In the future, we will ex-
tend the results to other fractional derivatives and boundary value
problems.
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